• 中国科学论文统计源期刊
  • 中国科技核心期刊
  • 美国化学文摘(CA)来源期刊
  • 日本科学技术振兴机构数据库(JST)

临床输血与检验 ›› 2024, Vol. 26 ›› Issue (4): 535-543.DOI: 10.3969/j.issn.1671-2587.2024.04.018

• 论著 • 上一篇    下一篇

基于机器学习的南京地区献血者精准招募方法的建立和应用*

陈娟1, 赵作彦2,3, 田金玥2,3, 张子涵3,4, 周春1, 蔡丽娜1, 马宇驰1, 周青杨1, 薛晖2,3, 梁文飚1   

  1. 1江苏省血液中心;
    2东南大学计算机科学与工程学院;
    3新一代人工智能技术与交叉应用教育部重点实验室(东南大学);
    4东南大学软件学院; 江苏南京 210042
  • 收稿日期:2024-07-02 出版日期:2024-08-20 发布日期:2024-09-23
  • 通讯作者: 薛晖,主要从事机器学习、模式识别与计算机视觉方面研究,(E-mail)hxue@seu.edu.cn。梁文飚,主要从事血液安全方面研究,(E-mail)wenbiaoliang@hotmail.com。
  • 作者简介:陈娟,主要从事献血者招募方面研究,(E-mail)695678835@qq.com。赵作彦,主要从事模式识别与计算机视觉方面研究,(E-mail)zuoyanzhao@seu.edu.cn;田金玥,主要从事模式识别与机器学习方面研究,(E-mail)jinyuetian@seu.edu.cn;张子涵,主要从事模式识别与计算机视觉方面研究,(E-mail)zzhdylan@seu.edu.cn;周春,主要从事网络及数据管理方面研究,(E-mail)21755316@qq.com。
  • 基金资助:
    *本课题受江苏省重点研发计划(社会发展)面上(No.BE2022811)项目资助

Machine Learning-based Development and Application of a Precise Blood Donor Recruitment Strategy in Nanjing

CHEN Juan1, ZHAO Zuoyan2,3, TIAN Jinyue2,3, ZHANG Zihan3,4, ZHOU Chun1, CAI Lina1, MA Yuchi1, ZHOU Qingyang1, XUE Hui2,3, LIANG Wenbiao1   

  1. 1Jiangsu Blood Center, Nanjing 210042;
    2School of Computer Science and Engineering, Southeast University, Nanjing, 210096;
    3Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications (Southeast University), Ministry of Education;
    4College of Software Engineering, Southeast University, Nanjing, 210096
  • Received:2024-07-02 Online:2024-08-20 Published:2024-09-23

摘要: 目的 通过基于机器学习的方法,建立南京地区献血者精准招募模型并开展应用,以提高献血招募的效率和质量,招募更多的献血者,确保血液供应的安全性和充足性。方法 对江苏省血液中心2017—2022年的献血和短信招募数据进行回顾性研究,利用极端梯度提升、支持向量机、K近邻算法、逻辑回归、决策树、随机森林、多层感知机等模型,并使用合成少数类过采样技术、下采样等多种采样技术,结合代价敏感方法(MFE、MSFE损失函数)进行训练,通过网格搜索选择性能较佳的机器学习模型。结果 研究发现,机器学习模型对高意愿献血者招募成功率提升57.79%,机器学习模型可减少40.05%的短信发送数量,每条短信招募效率较常规方法平均提升12.26%,减少了短信发送数量,提高了每条短信的招募效率。结论 机器学习算法可以对献血者进行精准识别,提高招募效率,减少不必要的短信发送,降低招募成本,为确保血液供应的安全性和充足性提供了有效的手段。

关键词: 献血者招募, 短信招募, 机器学习, 人工智能

Abstract: Objectives To establish and apply a precise blood donor recruitment model based on machine learning in Nanjing, thus enhancing the efficiency and quality of blood donation recruitment, incresing the number of blood donors, and ensuring the safety and sufficiency of blood supply. Methods This study retrospectively investigated blood donation and SMS recruitment data from Jiangsu Blood Center from 2017 to 2022. Various machine learning models, including eXtreme Gradient Boosting, Support Vector Machine, K-Nearest Neighbors, Logistic Regression, Decision Tree, Random Forest, and multi-layer perceptron models were used. These models were trained via techniques such as synthetic minority oversampling, under-sampling and cost-sensitive methods (mean false error and mean squared false error).The grid search method was used to select the machine learning models with better performance. Results The implemented machine learning model demonstrated a 57.79% improvement in the success rate of recruiting high willingness blood donors. Additionally, it reduced the number of SMS sending by 40.05%, and increased the recruitment efficiency of each SMS by an average of 12.26% compared with the conventional method. Conclusion Machine learning algorithms could accurately identify potential blood donors, thereby improving recruitment efficiency, reducing unnecessary SMS messages, decreasing recruitment costs, and providing an effective means to ensure the safety and adequacy of blood supply.

Key words: Blood donor recruitment, SMS recruitment, Machine Learning, Artificial Intelligence

中图分类号: