[1] BOSCHER J,GUINARD I,ECKLY A,et al.Blood platelet formation at a glance[J]. J Cell Sci,2020,133(20). [2] TYAGI T,JAIN K,GU S X,et al.A guide to molecular and functional investigations of platelets to bridge basic and clinical sciences[J]. Nat Cardiovasc Res,2022,1(3): 223-237. [3] XU B C,YE X P,WEN Z Y,et al.Epigenetic regulation of megakaryopoiesis and platelet formation[J]. Haematologica, 2024,109(10):3125-3137. [4] DAVENPORT P,LIU Z J,SOLA-VISNER M.Fetal vs adult megakaryopoiesis[J]. Blood,2022,139(22):3233-3244. [5] PATEL S R.The biogenesis of platelets from megakaryocyte proplatelets[J]. J Clin Investig,2005,115(12): 3348-3354. [6] MACHLUS K R,ITALIANO J E Jr. The incredible journey: From megakaryocyte development to platelet formation[J]. J Cell Biol,2013,201(6):785-796. [7] 夏文军,卢尧,吴煌,等. m6A去甲基化酶FTO调控BCL2 mRNA稳定性与翻译效率促进血小板前体形成[J]. 陆军军医大学学报,2025,47(6):519-530. [8] BESANCENOT R,ROOS-WEIL D,TONETTI C,et al.JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation[J]. Blood, 2014,124(13):2104-2115. [9] CHOU F S,GRIESINGER A,WUNDERLICH M,et al.The thrombopoietin/MPL/Bcl-xL pathway is essential for survival and self-renewal in human preleukemia induced by AML1-ETO[J]. Blood,2012,120(4):709-719. [10] HITCHCOCK I S,KAUSHANSKY K.Thrombopoietin from beginning to end[J]. Br J Haematol,2014,165(2): 259-268. [11] HITZLER J K,CHEUNG J,LI Y,et al.GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome[J]. Blood,2003,101(11): 4301-4304. [12] BEHRENS K,ALEXANDER W S.Cytokine control of megakaryopoiesis[J]. Growth Factors,2018,36(3/4): 89-103. [13] MANCINI E,SANJUAN-PLA A,LUCIANI L,et al.FOG-1 and GATA-1 act sequentially to specify definitive megakaryocytic and erythroid progenitors[J]. EMBO J, 2012,31(2):351-365. [14] WANG C,TU Z W,CAI X W,et al.A critical role of RUNX1 in governing megakaryocyte-primed hematopoietic stem cell differentiation[J]. Blood Adv, 2023,7(11): 2590-2605. [15] TIJSSEN M R,CVEJIC A,JOSHI A,et al.Genome-wide analysis of simultaneous GATA1/2,RUNX1,FLI1,and SCL binding in megakaryocytes identifies hematopoietic regulators[J]. Dev Cell,2011,20(5):597-609. [16] BARTEL D P. microRNAs: genomics,biogenesis,mechanism,and function[J]. Cell,2004,116(2):281-297. [17] GARZON R,PICHIORRI F,PALUMBO T,et al.microRNA fingerprints during human megakaryocytopoiesis[J]. Proc Natl Acad Sci USA,2006,103(13):5078-5083. [18] BHATLEKAR S,MANNE B K,BASAK I,et al.miR-125a-5p regulates megakaryocyte proplatelet formation via the actin-bundling protein L-plastin[J]. Blood,2020,136(15):1760-1772. [19] QU M Y,FANG F,ZOU X J,et al.miR-125b modulates megakaryocyte maturation by targeting the cell-cycle inhibitor p19(INK4D)[J]. Cell Death Dis,2016,7(10): e2430. [20] WEISS C N,ITO K. microRNA-22 promotes megakaryocyte differentiation through repression of its target,GFI1[J]. Blood Adv,2019,3(1):33-46. [21] CHEN X,YUAN Y X,ZHOU F,et al.RNA modification in normal hematopoiesis and hematologic malignancies[J]. MedComm,2024,5(11):e787. [22] WU H,LU Y,SUN D L,et al.CircFUT8 promotes proplatelet formation by interacting with IGF2BP2 and stabilizing TNS1 mRNA in megakaryocytes[J]. Blood, 2025. [23] 白秦,陈燕华,卢尧,等. 下调METTL3-LYN m6A-IGF2BP2通路抑制内皮细胞迁移[J]. 第三军医大学学报,2021, 43(9):845-851. [24] 李秀丽,车舒平,曹荣祎. 血小板中lncRNA在结肠癌早期筛查中的应用价值[J]. 临床输血与检验,2025,27(2):200-206. [25] SHI H H,CHAI P W,JIA R B,et al.Novel insight into the regulatory roles of diverse RNA modifications: re-defining the bridge between transcription and translation[J]. Mol Cancer,2020,19(1):78. [26] JIANG X L,LIU B Y,NIE Z,et al.The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther,2021,6(1):74. [27] BAI Q,LU Y,CHEN Y H,et al.Endothelial METTL3 (methyltransferase-like 3) inhibits fibrinolysis by promoting PAI-1 (plasminogen activator inhibitor-1) expression through enhancing Jun proto-oncogene N6-methyladenosine modification[J]. Arterioscler Thromb Vasc Biol,2021,41(12):2877-2889. [28] LV J H,ZHANG Y F,GAO S W,et al.Endothelial-specific m(6)a modulates mouse hematopoietic stem and progenitor cell development via Notch signaling[J]. Cell Res,2018,28(2):249-252. [29] JIANG Z X,WANG Y N,LI Z Y,et al.The m6A mRNA demethylase FTO in granulosa cells retards FOS-dependent ovarian aging[J]. Cell Death Dis,2021,12(8): 744. [30] LENCE T,AKHTAR J,BAYER M,et al.M(6)a modulates neuronal functions and sex determination in Drosophila[J]. Nature,2016,540(7632):242-247. [31] YANKOVA E,BLACKABY W,ALBERTELLA M,et al.Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia[J]. Nature,2021,593(7860): 597-601. [32] WANG Y,LI Y,TOTH J I,et al.N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells[J]. Nat Cell Biol,2014,16(2):191-198. [33] ZHANG C X,CHEN Y S,SUN B F,et al.M(6)a modulates haematopoietic stem and progenitor cell specification[J]. Nature,2017,549(7671):273-276. [34] WANG H,ZUO H N,LIU J,et al.Loss of YTHDF2-mediated m(6)A-dependent mRNA clearance facilitates hematopoietic stem cell regeneration[J]. Cell Res,2018, 28(10):1035-1038. [35] CHENG Y M,LUO H Z,IZZO F,et al. M(6)a RNA methylation maintains hematopoietic stem cell identity and symmetric commitment[J]. Cell Rep,2019,28(7): 1703-1716.e6. [36] GAO Y M,VASIC R,SONG Y B,et al. M(6)a modification prevents formation of endogenous double-stranded RNAs and deleterious innate immune responses during hematopoietic development[J]. Immunity,2020, 52(6):1007-1021.e8. [37] LEE H,BAO S Y,QIAN Y Z,et al.Stage-specific requirement for Mettl3-dependent m(6)a mRNA methylation during haematopoietic stem cell differentiation[J]. Nat Cell Biol, 2019,21(6):700-709. [38] LI D Y,PENG J,LI T T,et al.Itgb3-integrin-deficient mice may not be a sufficient model for patients with Glanzmann thrombasthenia[J]. Mol Med Rep,2021, 23(6):449. [39] HUANG K,GAO J,DU J,et al.Generation and analysis of GATA2(w/eGFP) human ESCs reveal ITGB3/CD61 as a reliable marker for defining hemogenic endothelial cells during hematopoiesis[J]. Stem Cell Reports,2016, 7(5):854-868. [40] KOMENO Y,UCHIYAMA T,KAWANO F,et al.Inherited macrothrombocytopenia due to a novel splice donor site mutation in ITGB3[J]. Ann Hematol,2023, 102(10):2947-2949. |