• 中国科学论文统计源期刊
  • 中国科技核心期刊
  • 美国化学文摘(CA)来源期刊
  • 日本科学技术振兴机构数据库(JST)

临床输血与检验 ›› 2026, Vol. 28 ›› Issue (1): 103-110.DOI: 10.3969/j.issn.1671-2587.2026.01.016

• 临床研究 • 上一篇    下一篇

剖宫产术后出血的危险因素分析及Nomogram模型构建与验证*

陈鸣1, 夏征帆2, 秦嘉旭1, 于晶晶1, 张文杰1, 唐宗生1   

  1. 1皖南医学院弋矶山医院输血科,安徽芜湖 241001;
    2皖南医学院,安徽芜湖 241002
  • 收稿日期:2025-07-29 发布日期:2026-02-13
  • 通讯作者: 唐宗生,主要从事临床输血与免疫研究,(E-mail)tangzongsheng@163.com。
  • 作者简介:陈鸣,主要从事临床输血与免疫研究,(E-mail)1784873563@qq.com。
  • 基金资助:
    *本课题受安徽省教育厅高等学校科学研究重点项目(No.2022AH051214); 安徽省教育厅高等学校科学研究重点项目(No.2024AH0511938); 安徽省省属公立医疗卫生机构引进高层次人才奖补项目(No.GCCRC2022003)资助

Analysis of Risk Factors for Post-cesarean Hemorrhage and Development and Validation of A Predictive Nomogram Model

CHEN Ming1, XIA Zhengfan2, QIN Jiaxu1, YU Jingjing1, ZHANG Wenjie1, TANG Zongsheng1   

  1. 1Department of Blood Transfusion, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001;
    2Graduate School of Wannan Medical College, Wuhu 241002
  • Received:2025-07-29 Published:2026-02-13

摘要: 目的 开发并验证用于预测剖宫产术后24 h内产后出血(PPH)风险的列线图模型,为及时采取针对性防控策略,降低产后出血发生风险和术前备血提供依据。方法 本研究回顾性分析皖南医学院弋矶山医院1 000例剖宫产病例,根据产后失血量将训练队列(n=1 000)分为PPH组与non-PPH组,并额外收集独立验证队列(n=207)。通过最小绝对收缩与选择算子(LASSO)回归及多因素Logistic回归分析确定PPH独立危险因素,据此构建列线图模型。采用内部验证与外部验证评估模型性能,包括判别能力(受试者工作特征曲线下面积,AUC)、校准精度(Hosmer-Lemeshow检验)以及临床效用(决策曲线分析,DCA)。结果 (1)多因素Logistic回归分析筛选出剖宫产PPH的5个独立预测因子:胎盘植入性疾病(OR=5.75)、早产(OR=4.41)、子痫前期(OR=2.11)、妊娠期糖尿病(OR=2.07)及妊娠期高血压(OR=1.78)(均P<0.05),以此构建Nomogram模型。(2)基于此构建的列线图模型表现出良好性能:训练队列中AUC达0.80(95%CI:0.80~0.85),验证队列性能提升(AUC:0.87,95%CI:0.81~0.93)。校准曲线显示预测值与实际值偏差微小,决策曲线证实其在广泛风险阈值范围内具有临床适用性。结论 本研究基于胎盘植入性疾病、早产、子痫前期、妊娠期糖尿病和妊娠期高血压五个因素,成功构建了一个预测效能良好的列线图模型。该模型有助于识别剖宫产术后PPH高危人群,为临床术前决策和输血预案制备提供工具。

关键词: 产后出血, 剖宫产, 列线图, 危险因素, 预测模型

Abstract: Objective To develop and validate a nomogram model for predicting the risk of postpartum hemorrhage (PPH) within 24 hours after cesarean section, thus supporting timely targeted preventive measures and preoperative blood preparation. Methods In this retrospective study, we analyzed 1 000 cesarean section cases from Yijishan Hospital of Wannan Medical College. Based on postpartum blood loss, the training cohort (n=1 000) was divided into a PPH group and a non-PPH group. An additional independent validation cohort (n=207) was collected. Independent risk factors for PPH were screened using Least Absolute Shrinkage and Selection Operator (LASSO) regression and further assessed by multivariable logistic regression analysis. A nomogram prediction model was then constructed based on the identified factors. The model's performance was evaluated via both internal and external validation, including discrimination assessed by the area under the receiver operating characteristic curve (AUC), calibration evaluated using the Hosmer-Lemeshow test, and clinical utility examined by decision curve analysis (DCA). Results (1) Multivariable logistic regression analysis identified five independent predictors of PPH after cesarean section: placental abnormalities (OR=5.75), preterm birth (OR=4.41), preeclampsia (OR=2.11), gestational diabetes mellitus (GDM) (OR=2.07) and gestational hypertension (OR=1.78) (all P<0.05). These factors were incorporated into the nomogram. (2) The nomogram demonstrated an AUC of 0.80 (95%CI: 0.80~0.85) in the training cohort, with improved performance in the validation cohort (AUC: 0.87, 95%CI: 0.81~0.93). The calibration curves showed good agreement between predicted and observed probabilities. Decision curve analysis (DCA) confirmed the model's clinical utility across a wide range of risk thresholds. Conclusion This study successfully constructed a nomogram model with good predictive performance based on five factors: placenta accreta spectrum disorders, preterm birth, preeclampsia, gestational diabetes mellitus, and gestational hypertension. This model helps identify high-risk populations for postpartum hemorrhage after cesarean section, providing a tool for clinical preoperative decision-making and blood transfusion preparedness.

Key words: Postpartum hemorrhage, Cesarean section, Nomogram, Risk factors, Prediction model

中图分类号: