[1] IPD-IMGT/HLA Database.EMBL's European Bioinformatics Institute[EB/OL]. (2025-02-26). https://www.ebi.ac.uk/ipd/imgt/hla/about/statistics/. [2] CARRINGTON M.Recombination within the human MHC[J]. Immunol Rev,1999,167:245-256. [3] HÖGSTRAND K,BÖHME J. Gene conversion can create new MHC alleles[J]. Immunol Rev,1999,167:305-317. [4] BAHR A,WILSON A B.The evolution of MHC diversity:evidence of intralocus gene conversion and recombination in a single-locus system[J]. Gene,2012, 497(1):52-57. [5] KLITZ W,HEDRICK P,LOUIS E J.New reservoirs of HLA alleles:pools of rare variants enhance immune defense[J]. Trends Genet,2012,28(10):480-486. [6] RECHE P A,REINHERZ E L.Sequence variability analysis of human class Ⅰ and class Ⅱ MHC molecules: functional and structural correlates of amino acid polymorphisms[J]. J Mol Biol,2003,331(3):623-641. [7] INGRAM K J,O'SHIELDS E F,KIGER D F,et al. Identification of novel HLA alleles discovered in 2019—2021[J]. Hum Immunol,2021,82(12):982-984. [8] CHEUNG S K F,CHOI L C W,CHAN Y S,et al. Identification of 58 novel HLA alleles identified in Chinese individuals by next-generation sequencing[J]. HLA, 2023,102(3):343-347. [9] LI D M,JING Y Y,WANG L J,et al.The novel HLA-A*11:485 allele,identified by Sanger dideoxy nucleotide sequencing in a Chinese individual[J]. HLA, 2025, 105(3):e70127. [10] JING Y Y,LI D M,LIU N,et al.Recognition of the novel HLA-A*02:07:01:07 allele through third-generation HLA-targeted sequencing technology[J]. HLA,2025, 105(3):e70120. [11] ZHANG D,WANG D M,LIU N,et al.Identification of the novel HLA-DQB1*06:524 allele by Sanger dideoxy nucleotide sequencing[J]. HLA,2025,105(2):e70047. [12] YEAGER M,HUGHES A L.Evolution of the mammalian MHC:natural selection,recombination,and convergent evolution[J]. Immunol Rev,1999,167:45-58. [13] PARHAM P,ADAMS E J,ARNETT K L.The origins of HLA-A,B,C polymorphism[J]. Immunol Rev,1995, 143(1):141-180. [14] CHEN J M,COOPER D N,CHUZHANOVA N,et al.Gene conversion:mechanisms,evolution and human disease[J]. Nat Rev Genet,2007,8(10):762-775. [15] ROSU S,LIBUDA D E,VILLENEUVE A M.Robust crossover assurance and regulated interhomolog access maintain meiotic crossover number[J]. Science, 2011,334(6060):1286-1289. [16] HÖGSTRAND K,BÖHME J. Gene conversion of major histocompatibility complex genes is associated with CpG-rich regions[J]. Immunogenetics,1999,49(5):446-455. [17] NEUWIRTH E A H,HONMA M,GROSOVSKY A J. Interchromosomal crossover in human cells is associated with long gene conversion tracts[J]. Mol Cell Biol,2007,27(15):5261-5274. [18] NOREEN H J,YU N,SETTERHOLM M,et al.Validation of DNA-based HLA-A and HLA-B testing of volunteers for a bone marrow registry through parallel testing with serology[J]. Tissue Antigens,2001,57(3):221-229. [19] SMITH D M,BAKER J E,GARDNER W B,et al.HLA classⅠ null alleles and new alleles affect unrelated bone marrow donor searches[J]. Tissue Antigens,2005, 66(2):93-98. [20] HUGHES A L,NEI M.Pattern of nucleotide substitution at major histocompatibility complex classⅠ loci reveals overdominant selection[J]. Nature,1988,335(6186): 167-170. [21] HUGHES A L,NEI M.Nucleotide substitution at major histocompatibility complex classⅡ loci:evidence for overdominant selection[J]. Proc Natl Acad Sci USA, 1989,86(3):958-962. [22] MADDEN D R.The three-dimensional structure of peptide-MHC complexes[J]. Annu Rev Immunol,1995, 13: 587-622. [23] STERN L J,WILEY D C.Antigenic peptide binding by classⅠ and class Ⅱ histocompatibility proteins[J]. Structure,1994,2(4):245-251. [24] JÖRIS M M,VAN ROOD J J,ROELEN D L,et al. A proposed algorithm predictive for cytotoxic T cell alloreactivity[J]. J Immunol,2012,188(4):1868-1873. [25] GIL-ETAYO F J,NIÑO-RAMÍREZ J E,FONSECA-SANTOS M,et al. Quantifying HLA mismatches at epitope level in haplo-HSCT:impact in the outcome in strategies using PTCy[J]. HLA,2024,104(5):e15738. |