[1] CHEN N S,ZHOU M,DONG X,et al.Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan,China:a descriptive study[J].Lancet,2020,395(10223):507-513. [2] COVID-19 Cumulative Infection Collaborators. Estimating global,regional,and national daily and cumulative infections with SARS-CoV-2 through Nov 14,2021:a statistical analysis[J]. Lancet,2022:2022 Apr 8;S0140-2022 Apr 8;S6736(22)00484-6. [3] AL-KURAISHY H M,AL-GAREEB A I,ALBLIHED M,et al. COVID-19 in relation to hyperglycemia and diabetes mellitus[J]. Front Cardiovasc Med,2021,8:644095. [4] AL-KURAISHY H M,AL-GAREEB A I,AL-NIEMI M S,et al. COVID-19 and phosphodiesterase enzyme type 5 inhibitors[J].J Microsc Ultrastruct,2020,8(4):141-145. [5] FANG L,KARAKIULAKIS G,ROTH M.Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?[J].Lancet Respir Med,2020,8(4):e21. [6] UNSWORTH R,WALLACE S,OLIVER N S,et al.New-onset type 1 diabetes in children during COVID-19:multicenter regional findings in the U.K[J]. Diabetes Care,2020,43(11):e170-e171. [7] ARMENI E,AZIZ U,QAMAR S,et al.Protracted ketonaemia in hyperglycaemic emergencies in COVID-19:a retrospective case series[J].Lancet Diabetes Endocrinol,2020,8(8):660-663. [8] TANG T,BIDON M,JAIMES J A,et al.Coronavirus membrane fusion mechanism offers a potential target for antiviral development[J].Antiviral Res,2020,178:104792. [9] WU C T,LIDSKY P V,XIAO Y H,et al.SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment[J]. Cell Metab,2021,33(8):1565-1576.e5. [10] Millette K,Cuala J,Wang P,et al.SARS-CoV2 infects pancreatic beta cells in vivo and induces cellular and subcellular disruptions that reflect beta cell dysfunction[J]. Res Sq,2021:2021 Jul 20;rs.3.rs-2021 Jul 20;r592374. [11] LI M Y,LI L,ZHANG Y,et al.Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues[J]. Infect Dis Poverty,2020,9(1):45. [12] TAN L Y,KOMARASAMY T V,RMT BALASUBRAM ANIAM V. Hyperinflammatory immune response and COVID-19:a double edged sword[J]. Front Immunol,2021,12:742941. [13] AKBARI M,HASSAN-ZADEH V.IL-6 signalling pathways and the development of type 2 diabetes[J]. Inflammopharmacology,2018,26(3):685-698. [14] LAGATHU C,BASTARD J P,AUCLAIR M,et al.Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte:prevention by rosiglitazone[J]. Biochem Biophys Res Commun,2003,311(2):372-379. [15] JIN H,NING Y G,ZHOU H T,et al.IL-6 promotes islet β-cell dysfunction in rat collagen-induced arthritis[J]. J Diabetes Res,2016,2016:7592931. [16] OH Y S,BAE G D,PARK E Y,et al.microRNA-181c inhibits interleukin-6-mediated beta cell apoptosis by targeting TNF-α expression[J]. Molecules,2019,24(7):1410. [17] KIDA K,UTSUYAMA M,TAKIZAWA T,et al.Changes in lung morphologic features and elasticity caused by streptozotocin-induced diabetes mellitus in growing rats[J]. Am Rev Respir Dis,1983,128(1):125-131. [18] WEYNAND B,JONCKHEERE A,FRANS A,et al.Diabe tes mellitus induces a thickening of the pulmonary basal Lamina[J]. Respiration,1999,66(1):14-19. [19] PAL R,BHANSALI A.COVID-19,diabetes mellitus and ACE2:the conundrum[J].Diabetes Res Clin Pract,2020,162:108132. [20] ROCA-HO H,RIERA M,PALAU V,et al.Characterization of ACE and ACE2 expression within different organs of the NOD mouse[J]. Int J Mol Sci,2017,18(3):563. [21] GUO L,BI W W,WANG X L,et al.Engineered trimeric ACE2 binds viral spike protein and locks it in “Three-up”conformation to potently inhibit SARS-CoV-2 infection[J]. Cell Res,2021,31(1):98-100. [22] CODO A C,DAVANZO G G,DE BRITO MONTEIRO L,et al.Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis[J]. Cell Metab,2020,32(3):437-446.e5. [23] LIM S,BAE J H,KWON H S,et al.COVID-19 and diabetes mellitus:from pathophysiology to clinical management[J]. Nat Rev Endocrinol,2021,17(1):11-30. [24] JIA H L,LIU C W,LI D T,et al.Metabolomic analyses reveal new stage-specific features of COVID-19[J]. Eur Respir J,2022,59(2):2100284. [25] GEERLINGS S E,HOEPELMAN A I.Immune dysfunction in patients with diabetes mellitus (DM)[J]. FEMS Immunol Med Microbiol,1999,26(3/4):259-265. [26] ZHU L H,SHE Z G,CHENG X,et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes[J]. Cell Metab,2020,31(6):1068-1077.e3. [27] KIM J H,PARK K,LEE S B,et al.Relationship between natural killer cell activity and glucose control in patients with type 2 diabetes and prediabetes[J].J Diabetes Investig,2019,10(5):1223-1228. [28] XU Z,SHI L,WANG Y J,et al.Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. Lancet Respir Med,2020,8(4):420-422. [29] FERNANDEZ C,RYSÄ J,ALMGREN P,et al.Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality[J]. J Intern Med,2018,284(4):377-387. [30] BUHL K B,OXLUND C S,FRIIS U G,et al.Plasmin in urine from patients with type 2 diabetes and treatment-resistant hypertension activates ENaC in vitro[J].J Hypertens,2014,32(8):1672-1677;discussion 1677. [31] HUA H,KONG Q B,ZHANG H Y,et al.Targeting mTOR for cancer therapy[J]. J Hematol Oncol,2019,12(1):71. [32] XU T,SUN D J,CHEN Y,et al.Targeting mTOR for fighting diseases:a revisited review of mTOR inhibitors[J]. Eur J Med Chem,2020,199:112391. [33] RUDERMAN N,PRENTKI M.AMP kinase and malonyl-CoA:targets for therapy of the metabolic syndrome[J]. Nat Rev Drug Discov,2004,3(4):340-351. [34] NOJIMA H,TOKUNAGA C,EGUCHI S,et al.The mammalian target of rapamycin (mTOR) partner,raptor,binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif[J]. J Biol Chem,2003,278(18):15461-15464. [35] APPELBERG S,GUPTA S,SVENSSON AKUSJÄRVI S,et al.Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells[J]. Emerg Microbes Infect,2020,9(1):1748-1760. [36] CHENG X,LIU Y M,LI H M,et al.Metformin is associated with higher incidence of acidosis,but not mortality,in individuals with COVID-19 and pre-existing type 2 diabetes[J]. Cell Metab,2020,32(4):537-547.e3. [37] SHAO S Y,YANG Q,PAN R P,et al.Interaction of severe acute respiratory syndrome coronavirus 2 and diabetes[J]. Front Endocrinol (Lausanne),2021,12:731974. [38] TAO X,CAI L S,CHEN L,et al.Effects of metformin and Exenatide on insulin resistance and AMPKα-SIRT1 molecular pathway in PCOS rats[J].J Ovarian Res,2019,12(1):86. [39] WU K J,TIAN R,HUANG J,et al.Metformin alleviated endotoxemia-induced acute lung injury via restoring AMPK-dependent suppression of mTOR[J].Chem Biol Interact,2018,291:1-6. [40] RAJPAL A,RAHIMI L,ISMAIL-BEIGI F.Factors leading to high morbidity and mortality of COVID-19 in patients with type 2 diabetes[J].J Diabetes,2020,12(12):895-908. [41] GALLWITZ B.Clinical use of DPP-4 inhibitors[J]. Front Endocrinol (Lausanne),2019,10:389. [42] HE X R,LI W G,XIE Y L,et al.Long-term inhibition of dipeptidyl-peptidase 4 reduces islet infiltration and downregulates IL-1β and IL-12 in NOD mice[J]. Int Immunopharmacol,2020,88:106945. [43] MIRANI M,FAVACCHIO G,CARRONE F,et al.Impact of comorbidities and glycemia at admission and dipeptidyl peptidase 4 inhibitors in patients with type 2 diabetes with COVID-19:a case series from an academic hospital in Lombardy,Italy[J]. Diabetes Care,2020,43(12):3042-3049. [44] LOCKHART S M,GRIFFITHS H,PETRISOR B,et al.The excess insulin requirement in severe COVID-19 compared to non-COVID-19 viral pneumonitis is related to the severity of respiratory failure and pre-existing diabetes[J]. Endocrinol Diabetes Metab,2021,4(3):e00228. [45] COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators.Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19:a prospective cohort study[J]. Intensive Care Med,2021,47(1):60-73. [46] YU B,LI C Z,SUN Y,et al.Insulin treatment is associated with increased mortality in patients with COVID-19 and type 2 diabetes[J].Cell Metab,2021,33(1):65-77.e2. [47] BREINING P,FRØLUND A L,HØJEN J F,et al. Camostat mesylate against SARS-CoV-2 and COVID-19—rationale,dosing and safety[J]. Basic Clin Pharmacol Toxicol,2021,128(2):204-212. [48] SANTOS J,BRIERLEY S,GANDHI M J,et al.Repurposing therapeutics for potential treatment of SARS-CoV-2:a review[J]. Viruses,2020,12(7):705. [49] JIA D M,TAGUCHI M,OTSUKI M.Synthetic protease inhibitor camostat prevents and reverses dyslipidemia,insulin secretory defects,and histological abnormalities of the pancreas in genetically obese and diabetic rats[J]. Metabolism,2005,54(5):619-627. [50] HOFFMANN M,KLEINE-WEBER H,SCHROEDER S,et al.SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell,2020,181(2):271-280.e8. [51] JUURLINK D N.Safety considerations with chloroquine,hydroxychloroquine and azithromycin in the management of SARS-CoV-2 infection[J]. CMAJ,2020,192(17):E450-E453. [52] WASKO M C M,MCCLURE C K,KELSEY S F,et al. Antidiabetogenic effects of hydroxychloroquine on insulin sensitivity and beta cell function:a randomised trial[J]. Diabetologia,2015,58(10):2336-2343. [53] CHOY K T,WONG A Y L,KAEWPREEDEE P,et al.Remdesivir,lopinavir,emetine,and homoharringtonine inhibit SARS-CoV-2 replication in vitro[J].Antiviral Res,2020,178:104786. [54] LI Y N,SU Y.Remdesivir attenuates high fat diet (HFD)-induced NAFLD by regulating hepatocyte dyslipidemia and inflammation via the suppression of STING[J]. Biochem Biophys Res Commun,2020,526(2):381-388. [55] BEIGEL J H,TOMASHEK K M,DODD L E,et al.Remdesivir for the treatment of covid-19 - final report[J]. N Engl J Med,2020,383(19):1813-1826. [56] WANG Y M,ZHANG D Y,DU G H,et al.Remdesivir in adults with severe COVID-19:a randomised,double-blind,placebo-controlled,multicentre trial[J]. Lancet,2020,395(10236):1569-1578. [57] GROUP W H O R E A F C 1 T (W,STERNE J A C,MURTHY S,et al.Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19:a meta-analysis[J]. JAMA,2020,324(13):1330-1341. |