[1] 李津杞,臧艳,李津婴,等. 输血治疗儿童遗传性难治性溶血性贫血的回顾性分析[J]. 临床输血与检验,2022,24(3): 325-328. [2] 程志祥,任林,曹红荣,等. 基于《血液安全监测指南》开展临床输血不良事件监测的探索[J]. 临床输血与检验, 2023,25(1):48-55. [3] 黄雅. 丙酮酸钠对红细胞氧化损伤的保护作用及其机制研究[D]. 北京:中国人民解放军军事医学科学院,2015. [4] 马兰萍,刘在群,周波,等. 绿茶多酚对自由基诱导的红细胞氧化性溶血的抑制作用[J]. 科学通报,2000,45(12): 1271-1275. [5] 王建舜,容维祺,康九红. 姜黄素对羟自由基及红细胞氧化性溶血的影响[J]. 中国现代应用药学,2000,17(6):469-471. [6] TIAN R Z,XU J Y,LUO Q,et al.Rational design and biological application of antioxidant nanozymes[J]. Front Chem,2021,8:831. [7] LIU Z,XIE L N,QIU K Q,et al.An ultrasmall RuO2 nanozyme exhibiting multienzyme-like activity for the prevention of acute kidney injury[J]. ACS Appl Mater Interfaces,2020,12(28):31205-31216. [8] MA M M,LIU Z Q,GAO N,et al.Self-protecting biomimetic nanozyme for selective and synergistic clearance of peripheral amyloid-β in an Alzheimer's disease model[J]. J Am Chem Soc,2020,142(52):21702-21711. [9] ZHANG D Y,YOUNIS M R,LIU H K,et al.Multi-enzyme mimetic ultrasmall iridium nanozymes as reactive oxygen/nitrogen species scavengers for acute kidney injury management[J]. Biomaterials,2021,271: 120706. [10] HUANG Y X,XU Q Y,ZHANG J,et al.Prussian blue scavenger ameliorates hepatic ischemia-reperfusion injury by inhibiting inflammation and reducing oxidative stress[J]. Front Immunol,2022,13:891351. [11] TIAN Y J,LI Y,LIU J L,et al.Photothermal therapy with regulated Nrf2/NF-κB signaling pathway for treating bacteria-induced periodontitis[J]. Bioact Mater, 2022,9:428-445. [12] ODDA A H,LI H L,KUMAR N,et al.Polydopamine coated PB-MnO2 nanoparticles as an oxygen generator nanosystem for imaging-guided single-NIR-laser triggered synergistic photodynamic/photothermal therapy[J]. Bioconjug Chem,2020,31(5):1474-1485. [13] DORMAN S C,KENNY C F,MILLER L,et al.Role of redox potential of hemoglobin-based oxygen carriers on methemoglobin reduction by plasma components[J]. Artif Cells Blood Substit Immobil Biotechnol,2002,30(1):39-51. [14] TERAMURA Y,KANAZAWA H,SAKAI H,et al.Prolonged oxygen-carrying ability of hemoglobin vesicles by coencapsulation of catalase in vivo[J]. Bioconjug Chem,2003,14(6):1171-1176. [15] ALAGIC A,KOPRIANIUK A,KLUGER R.Hemoglobin-superoxide dismutase-chemical linkages that create a dual-function protein[J]. J Am Chem Soc, 2005,127(22):8036-8043. [16] WU J,WANG X Y,WANG Q,et al.Nanomaterials with enzyme-like characteristics (nanozymes):next-generation artificial enzymes (II)[J]. Chem Soc Rev, 2019,48(4):1004-1076. [17] RAGG R,TAHIR M N,TREMEL W.Solids go bio:inorganic nanoparticles as enzyme mimics[J]. Eur J Inorg Chem,2016,2016(13/14):1906-1915. [18] WANG H,WAN K,SHI X.Recent advances in nanozyme research[J]. Adv Mater,2019,31(45):e1805368. [19] LI Z H,YANG X D,YANG Y B,et al.Peroxidase-mimicking nanozyme with enhanced activity and high stability based on metal-support interactions[J]. Chemistry,2018,24(2):409-415. [20] ZHANG S Q,LIN F F,YUAN Q P,et al.Robust magnetic laccase-mimicking nanozyme for oxidizing o-phenylenediamine and removing phenolic pollutants[J]. J Environ Sci,2020,88:103-111. [21] WANG Y J,SHI M J,CHU Z T,et al.Protective effect of bioactive iridium nanozymes on high altitude-related hypoxia-induced kidney injury in mice[J]. Front Pharmacol,2023,14:1115224. [22] VAN DIJKHUIZEN-RADERSMA R,HESSELING S C,KAIM P E,et al. Biocompatibility and degradation of poly(ether-ester) microspheres:in vitro and in vivo evaluation[J]. Biomaterials,2002,23(24):4719-4729. |